Autonomy vs Petrolheads

Hosting many events, we are fortunate to attract some really interesting people, whether they are already established in the driverless technology sector or moving towards it.

This guest blog is provided (with our gratitude) by Basileios Mavroudakis – a vehicle system dynamics (VSD) and controls expert, with a broad background on  simulation techniques (Basil holds a PhD on Simulation in F1). Basil recently worked for supercar manufacturer McLaren on a top secret project… 


Recently Roborace made history running two autonomous racing cars in Buenos Aires. According to reports one devbot crashed but the other managed a respectably quick lap clocking 186 kph (see the team’s tweets for updates). The racing incident is not a bad thing at all; rather a proof that Roborace’s visionaries really push the (performance) envelope.

A few months ago, Forbes published a very interesting story on VW’s autonomous race instructor, a performance oriented ADAS made feasible thanks to the advances in technologies similar to the ones developed by Roborace and, of course, Audi (the pioneering RS7 being the first autonomous car to decently compete against a professional racing driver), while Ford has recently filed a patent for an ‘Autonomous Racecar mode’. Meanwhile, the academic research community has been in the forefront of such developments, from Stanford’s pioneering Shelley to the announced autonomous Formula Student Germany for 2017.

Of course an autonomous controller’s ability to maintain control of the vehicle on the limits of the performance envelope and beyond is the key enabler for massive gains in active safety. However, there is also a more relevant to us petrolheads pattern to identify in the aforementioned schemes: the provision for performance-oriented operating conditions.

People who know me know that I love driving. I enjoy a safe, sane and spirited drive when the road conditions permit, with a responsive four or two wheeled vehicle. And I relish the pleasure of exploiting the vehicle’s limits in a controlled hence safe environment (i.e. track days). Do I fear that the rise of robotic cars will deprive me of the joy of driving? Au contraire! I am very confident that autonomy will relieve me of the mundane task of driving under unpleasant circumstances and also be the enabler for a number of technologies that will retain or enhance the pleasure while driving under certain others.

The dynamics of high performance vehicles have been my core scientific interest ever since I was a student. The optimisation of their performance under all conditions has been the prime focus during most of my professional life and is yet to bore me (I doubt it will ever) while the human factors aspects of the driver-vehicle interaction, often cited as subjective attributes, have dominated my free time since I learned how to drive and ride.

drift controller e1489408648781
Fig 1. An autonomous drift controller’s function developed by the author

During my 15 years of engineering involvement and almost 25 on/in the driving seat I have introduced, developed and experienced a number of performance enhancing technologies; some solely focused on going faster around the track, others on providing a higher level of engagement and most of them both.

I can understand the reservations expressed by some fellow-petrolheads, especially from a puristic perspective: Where do you draw a line between aids and skill? Where, indeed? Is the use of racing ABS to be condemned? Of paddleshifts? And if so, then why not strip gearboxes of the synchromesh too in order to increase the required skill level?

I really don’t have an answer and am inclined to believe that this is a matter of flavour: some people will prefer to allocate more control effort to the said tasks while others (me included) to focus on dynamic states like side-slip angle and mu variations. I am also willing to accept that some times enhancing the performance envelope can have a negative impact on engagement: adding lap-time improving technologies can introduce layers of complexity resulting in a less transparent response from the vehicle and, of course, pushing the limits upwards usually makes for a less approachable car on the road, one that may require irresponsible risks to come alive.

And this is why I am so excited about the opportunities arising from the developments in autonomy: what’s not to like about a future performance car boasting a swollen performance envelope, the natural-feeling ADAS to help drivers go faster and hone their skills and a super safety-net to keep everyone, including the authorities, happy?

I acknowledge the excitement resulting from exploiting limit-handling close to and beyond our control bandwidth without any aids. I am afraid that this might become (if not becoming already) an exclusive pleasure for the privileged few.

What do you think?

Scroll to Top
2024 ADAS Guide

The state-of-play in today’s ADAS market

With exclusive editorials from Transport Canada and SAE;  the ADAS Guide is free resource for our community. It gives a detailed overview of features in today’s road-going vehicles, categorized by OEM, alongside expert analysis.